Tyrphostin AG556 increases the activity of large conductance Ca2+‐activated K+ channels by inhibiting epidermal growth factor receptor tyrosine kinase
نویسندگان
چکیده
The present study was designed to investigate whether large conductance Ca2+ -activated K+ (BK) channels were regulated by epidermal growth factor (EGF) receptor (EGFR) tyrosine kinase. BK current and channel tyrosine phosphorylation level were measured in BK-HEK 293 cells expressing both functional α-subunits and the auxiliary β1-subunits using electrophysiology, immunoprecipitation and Western blotting approaches, respectively, and the function of rat cerebral basilar arteries was determined with a wire myography system. We found that BK current in BK-HEK 293 cells was increased by the broad spectrum protein tyrosine kinase (PTK) inhibitor genistein and the selective EGFR tyrosine kinase inhibitor AG556, one of the known tyrphostin. The effect of genistein or AG556 was antagonized by the protein tyrosine phosphatase (PTP) inhibitor orthovanadate. On the other hand, orthovanadate or EGF decreased BK current, and the effect was counteracted by AG556. The tyrosine phosphorylation level of BK channels (α- and β1-subunits) was increased by EGF and orthovanadate, while decreased by genistein and AG556, and the reduced tyrosine phosphorylation of BK channels by genistein or AG556 was reversed by orthovanadate. Interestingly, AG556 induced a remarkable enhancement of BK current in rat cerebral artery smooth muscle cells and relaxation of pre-contracted rat cerebral basilar arteries with denuded endothelium, and these effects were antagonized by the BK channel blocker paxilline or orthovanadate. These results demonstrate that tyrosine phosphorylation of BK channels by EGFR kinase decreases the channel activity, and inhibition of EGFR kinase by AG556 enhances the channel activity and dilates rat cerebral basilar arteries.
منابع مشابه
2D-QSAR and docking studies of 4-anilinoquinazoline derivatives as epidermal growth factor receptor tyrosine kinase inhibitors
Introduction: Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor derivatives play an important role in the treatment of cancer. We aim to construct 2D-QSAR models using various chemometrics using 4-anilinoquinazoline-containing EGFR TKIs. In addition, the binding profile of these compounds was evaluated using a docking study. Materials and Methods: In this study, 122 compounds of...
متن کاملMolecular Docking Based on Virtual Screening, Molecular Dynamics and Atoms in Molecules Studies to Identify the Potential Human Epidermal Receptor 2 Intracellular Domain Inhibitors
Human epidermal growth factor receptor 2 (HER2) is a member of the epidermal growth factor receptor family having tyrosine kinase activity. Overexpression of HER2 usually causes malignant transformation of cells and is responsible for the breast cancer. In this work, the virtual screening, molecular docking, quantum mechanics and molecular dynamics methods were employed to study protein–ligand ...
متن کاملAngiotensin II triggers EGFR tyrosine kinase-dependent Ca2+ influx in afferent arterioles.
We previously reported that inhibition of epidermal growth factor receptor tyrosine kinase activity attenuates renal arteriolar contractile responses to angiotensin II. We performed the present experiments to determine if epidermal growth factor receptor tyrosine kinase activity contributes to the afferent arteriolar intracellular [Ca2+] response to angiotensin II. Afferent arterioles were diss...
متن کاملAngiotensin II type 1 receptor-induced extracellular signal-regulated protein kinase activation is mediated by Ca2+/calmodulin-dependent transactivation of epidermal growth factor receptor.
The signaling cascade elicited by angiotensin II (Ang II) resembles that characteristic of growth factor stimulation, and recent evidence suggests that G protein-coupled receptors transactivate growth factor receptors to transmit mitogenic effects. In the present study, we report the involvement of epidermal growth factor receptor (EGF-R) in Ang II-induced extracellular signal-regulated kinase ...
متن کاملThe degree of inhibition of protein tyrosine kinase activity by tyrphostin 23 and 25 is related to their instability.
Tyrphostins, a series of compounds with hydroxy cis-cinnamonitrile backbone structures, are used as protein tyrosine kinase inhibitors to study signal transduction. While studying the inhibition of pp60c-src protein tyrosine kinase activity with tyrphostins 23 and 25 (3,4-di- and 3,4,5-trihydroxy cis-cinnamonitrile), we found the inhibitors to be quite unstable. The inhibition of pp60c-src acti...
متن کامل